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Abstract

The paper describes an approach taken to estimate the probabilities of failure associated with various railroad tasks to prevent accidents

(principally collisions and derailments). These probabilities were estimated using an expert elicitation process that used partially relevant

data available from a variety of databases and that were filtered and scaled to make them more directly relevant to the analyses being

performed. Extensive qualitative studies were performed prior to the elicitation process to identify relevant contexts under which the tasks

can be performed.
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1. Introduction

The railroad industry in the United States is in the

process of developing positive train control (PTC) systems

primarily intended to improve the throughput and safety of

railroad operations. See, for example, Ref. [1] for a

summary of PTC concepts and systems.

PTC systems address three core safety-related functions:

† Preventing train-to-train collisions

† Enforcing speed restrictions and temporary slow orders

† Providing protection for roadway workers and their

equipment

The complexity of these technologies (particularly

communication and information technologies) requires

additional safety considerations that current FRA regu-

lations do not address. As a consequence the US Federal

Railroad Administration (FRA) has developed a proposed

rule to assess the safety of these systems using (among other

assessment methods) the results of probabilistic risk

assessments (PRAs) [2].

The proposed rule adopts a performance-based approach

to enable flexibility in the design and implementation of

PTC systems while providing a mechanism to achieve
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safety goals. The performance standard adopted in the rule

requires that the new product or system must not degrade

safety below the level of the existing system. To evaluate

whether this condition is met requires a risk assessment

comparing the new system to the system it will replace.

This proposed rule would require that any railroad

wishing to use a processor-based control system (such as

positive train control (PTC) systems) to provide more

effective or efficient control of train movements must

submit a product safety plan (PSP) that includes a

quantitative risk assessment that compares the mean time

to hazardous events (MTTHE) for related railroad oper-

ations with and without use of the processor-based control

system to show that there would be no reduction in safety

from implementing the system. The proposed rule also

requires that MTTHE values must incorporate the impact of

all elements of the system, including human factors as well

as the hardware and software components. While this rule is

not final, it is considered very likely that the final rule will

contain the same conceptual requirements for performing a

quantitative risk assessment as part of the PSP.

This paper focuses on some techniques for estimating the

probabilities of human errors associated with train oper-

ations where partially relevant data are available but do not

directly correspond with the events being modeled. It is

noted that such conditions often apply in modeling human

errors in other technical settings, including nuclear power
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applications. A full description of the work is presented in

Ref. [3].

2. Train control, unsafe actions and safety in rail

operations

The purpose of the human reliability analyses in this

study was to estimate the likelihood of specific unsafe

human actions. Unsafe actions include actions not being

taken that could prevent hazardous events, as well as actions

being taken that may cause hazardous events (by themselves

or in combination with other conditions). The particular

system being modeled is a new computer-based system for

train monitoring and control, TMC, that is being developed

by a large North American freight railroad. The TMC

system is a form of train control that provides a warning to

the locomotive crew when the train is predicted to exceed

the limits of its authority1 and stops the train if the engineer

fails to act in time. The system is intended to operate in

‘dark territory’ where authority for train movements and

track occupancy is accomplished by verbal exchanges

between the dispatcher and train crew (i.e. no signal

displays are used—hence the term dark territory—and, for

the most part, a single track with sidings is used for traffic in

both directions). Railroad-specific operating rules govern

the exchange of information between the dispatcher and the

train crew.

Should errors occur, for example misunderstandings

about the limits of authority during radio communications

between the dispatcher and the train crew, TMC provides an

additional layer of defense. TMC receives information

regarding the authorized train movements from a computer-

aided dispatch system used by the dispatcher to indicate

valid track occupancy and compares this information with

the current train position (using global positioning systems

(GPS) data) to determine whether the train is operating

within its authority. This system is ‘overlaid’ over the

existing manual train control system; should it fail,

protection is still provided by the existing rules of operation.

One of the uses of human reliability analysis (HRA)

proposed by FRA is in support of risk-based evaluation of

new technology. When a new technology is introduced that

requires human interaction, one cannot evaluate the

performance of the new technology in isolation. Rather,

the role that the human may play needs to be considered in

either enhancing the overall performance or degrading it.

This requires performing analyses to quantify risk in the

base case (with existing technology) and then comparing

1 A train’s authority is the permission, generally given by a central

dispatcher under the operating rules of the company, to occupy a particular

section of track (referred to as a ‘block’). At the end of that authority, the

train crew must request, and be given, a new authority before they may

move into the next block.
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this risk to the estimated risk once the new technology is

introduced.

The analyses described in this paper were those

performed for the existing system for which operating

experience and some data exist. Four kinds of conditions

involving unsafe actions were selected by FRA and the

analysts performing a broader scope probabilistic risk

assessment (PRA) to be the subject of the HRA—these

are conditions that the TMC has the potential to prevent.

These are:

1. Train enters a block without authorization. Entering a

block without authorization creates the potential for a

collision with a train already occupying the block.

2. Train exceeds the track speed limit. This creates the

potential for derailing the train and damaging the track,

and for creating a release of hazardous materials to the

environment, the workforce, and the public (possibly

requiring an evacuation).

3. Train enters a preplanned work zone without authoriz-

ation. This has the potential for maintenance workers or

equipment being struck, or the train entering track that is

not intact.

4. Train crosses a misaligned switch. This has the

potential for derailing the train and damaging the

track, plus the risk of releases of hazardous materials.

Each of these conditions can result from unsafe actions.

For example, the train could enter a block without

authorization because the train crew were not paying

attention to their location and inadvertently passed the end

of their authorization. Alternatively the crew may believe

they have authorization (for example, because of poor radio

communications with the dispatcher) for the block being

entered. The dispatcher may provide verbal authorization

but not enter the data in the computer system correctly. Also

the crew may miss the block boundary location because of

very poor visibility or because the boundary sign has been

vandalized or damaged. As would be expected, system

operating rules and design features reduce the potential for

many of these conditions. For example, operation of the

dispatch system and the operating rules for communications

between the dispatcher and the train crew require double

checking of the authorization, to ensure the crew read back

correctly the authorization as entered in computer by the

dispatcher. Crews are very familiar with the territory and

know the block boundary locations even if the signs are

missing or damaged.

3. Human reliability analysis

This analysis involved performing both qualitative and

quantitative studies to define and evaluate the relevant

unsafe actions, the contexts in which the unsafe actions

could occur, and the probabilities of the unsafe actions in
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these contexts. The quantitative analysis of these unsafe

actions was performed primarily by an expert elicitation

process using a workshop involving representatives from all

the participating technical and management organizations.

For each of the conditions, a detailed qualitative analysis

was performed that involved two aspects: (1) an analysis of

the current work environment to understand the types of

errors that can arise and the factors that contribute to those

errors; and (2) an examination of the proposed TMC system,

its user interface and proposed human-system interaction, to

assess its potential impact on human performance and

human reliability. This analysis involved structured inter-

views and visits to observe both the current operations and

field testing of a prototype of the TMC system.

The focus of the interviews and observations included:

† What are the most likely forms of human error in the

current railroad operations in the segment of railroad

territory where tests of the TMC were being conducted

(i.e. the base case)?

† What are the factors that are most likely to contribute to

those errors?

† What recovery mechanisms do humans provide that

contribute to a robust, high-reliability system?

† What impact would TMC likely have on human

reliability and overall safety?

† Could TMC prevent and/or catch and recover from the

types of human errors that are known to occur in the base

case?

† Would TMC change how the people in the system

perform (i.e. locomotive engineers, conductors, dispatch-

ers)?

† Could TMC introduce any new sources of risk? If so,

are there mechanisms available to enable the people in

the system (e.g. the locomotive engineer, the con-

ductor, the dispatcher) to catch and recover from the

TMC-induced ‘errors’?

The primary tasks in the quantitative analysis of the HRA

were the identification of relevant sources of data, their

limitations and gaps, and application of the expert elicitation

process used to compensate for these limitations and gaps in

the final quantification steps.

3.1. Overall analytical process for quantification

The overall analytical process for quantifying the

probabilities of each of the human error events was to

answer the following five questions. The first three

were answered in large part before the quantification

process was started, by defining the scope of the analysis

and in the discussions undertaken as part of the qualitative

analyses.

† Identify major events to quantify. For example, the train

exceeds its limits of authority. This could be the result of

two different general human errors—errors by the train

crew and errors by the dispatcher.

† What is the scope? For each major event identified in

the previous step, what kinds of errors does that event

include? In the case of the train crew, the scope would

simply be the crew fails to stop the train at its limit of

authority because of (for example) failing to notice

they have reached the end of the last block or

erroneously recalling what is the limit of their

authority.

† What kinds of things could cause the errors listed in

the previous step? A partial list of what could cause

failure of the train crew to stop at the limit of the

authority includes:
* Inattention or failure to recognize their location
* Erroneous recall of authority limits
* Distraction (within the cab or outside the cab)
* Over-reliance on another crew member

† Misjudged braking performance

† What data exist? To what degree do the available

databases relate to the events being modeled? Do they

include all or most of the identified significant causes?

† What judgments are needed? Are there additional

causes not included or under-reported in the databases

that are relevant to the analysis? For example, are all

the causes listed above (inattention, etc.) included in

the train crew disciplinary database or the FRA

incident database? Are there additional causes in

these databases that should be excluded because they

do not related to causes being modeled? On what

basis can these data be filtered and scaled?

Based on the combination of the databases and

the judgments, the final probability parameters (usually

in the form of probability distributions) for the human

error events are estimated. This overall process is shown

in Fig. 1.

3.2. Sources of data

Two kinds of data are typically required in HRA studies:

information about the numbers of events that have occurred

that are similar to those being modeled and information

about the number of opportunities for such events

(operational experience base), such that a probability of

the events can be estimated. Two major sources of data

were identified in this study: the databases maintained

by the FRA, and databases maintained by the freight

railroad. These sources of data contain information

about both the frequencies of events and the opportunities

for such events.

3.2.1. FRA Databases

FRA maintains a database [4] that contains coded

summaries of incidents in railroads that meet the FRA

reporting requirements. These summaries identify, among
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individuals were identified in either database. Both

databases provided a brief summary of the event (either

the rule violated (dispatcher data) or the type of event

(train crew data)) and the date. From these data, it was

possible to identify for example, if the action was a track

segment violation (that is, exceeding the limits of their

authority) for a train crew, or if the action was a violation

of a rule concerning issuing a block authority inappropri-

ately by a dispatcher.

In the case of operational experience that can be used as a

basis for estimating the number of opportunities for the

unsafe action of interest, the freight railroad provided a set

of ‘raw’ data for the test territory: a set of all movement

authorities for the territory covering a 2-week period. This

2-week period was considered to typify operations for the

test territory. For this 2-week period, the data allowed the

following items to be identified:

† The number of trains traveling the territory

† The number of authorities that were issued

† The time and the number of blocks issued or released for

each train

† The number and duration of temporary work zone

restrictions in place

† The number of track inspections occurring at any time

Table 1 illustrates data sources and their relevance in

estimating probability of unsafe human actions for select

examples; a complete set of similar tables was generated for

all relevant actions in the actual studies.

3.3. Limitations and gaps in the databases

Each database has certain limitations and gaps with

regard to the events being analyzed. These are briefly

summarized below. Those limitations were resolved

through interactive sessions with experts in railroad

operations.

3.3.1. FRA databases

Incident database. There are two primary limitations in

this database: events to be recorded must meet certain

damage or injury criteria as set forth by FRA,2 and only a

limited set of causal information is required to be provided

by the reporting railroad. As a result of the first, there is a

potentially significant gap of event information for which no

accident occurred-there is no ‘near miss’ reporting for

events involving unsafe actions but no (or only minimal)

consequence.

Because almost any accident is the result of multiple

causes, the ways in which an event is reported can

be somewhat subjective as to what is given a primary

focus—equipment or human. Therefore relying only on

2 See FRA Instructions for preparing FRA Form F 6180.54, Rail

Equipment Accident/Incident Form—see [4].

Fig. 1. Overall analytical process.

other things, the railroad(s) and locomotive identifiers

involved, the date and location, the type of

traffic (passenger, freight, etc.) and a set of cause codes

for the event, based on the investigation made by the

railroad.

The FRA also maintains an operational experience

database, available at [4]. This database summarizes the

amounts of train movements (expressed in train-miles) for

each railroad, separated by train-miles in yards versus track,

passenger versus freight, etc. Totals per calendar month are

provided.

3.2.2. Freight railroad databases

The freight railroad identified several incident data-

bases suitable for this analysis. The first was a summary

of events that occurred on the test territory in the nine

years preceding the study. Each event record included a

summary of the type of event, and whether it was

hardware-, human-, roadway-or other-related. In total,

there were 89 events, of which the largest contribution

was from roadway equipment problems. A total of 24

events involved a human-related cause.

The second set of incident databases was associated

with disciplinary actions taken by the freight railroad.

Two were provided: one associated with train crew

disciplinary actions and one with dispatcher actions. No

J. Wreathall et al. / Reliability Engineering and System Safety 83 (2004) 221–228224



the cause codes of the events does not provide a sufficient

basis for identifying events relevant to this study. The

reports do provide the opportunity for presenting a narrative

for additional information but there can be quite significant

latitude in the way events are reported. However, the

combination of types of events and the narratives seems to

provide at least a basic starting point for identifying relevant

events.

Operational experience database. The FRA oper-

ational database provides a basis for estimating total

train movements within a given railroad, but the

categories only describe whether the movements were

in yards or out of yards. There is no distinction between

the types of train control system in use (e.g. whether it is

dark territory), or any information about traffic within

specific territories.

3.3.2. Freight railroad databases

Incident databases. The small number of events limited

the freight railroad database associated with incidents in the

test territory. The databases associated with disciplinary

actions were limited largely by the fact that that an unknown

number of similar events could occur, but without any

mechanism to detect and report the event outside of the crew

involved, and the absence of any incentive to self-report

such events, this number cannot be known for certain. On

the other hand, some disciplinary events (particularly for

train crews) could be the result of performance testing that is

more rigorous than (and not representative of) normal

operations. Therefore, the potential exists for both under-

estimating (from unseen events) and overestimating (from

the inclusion of non-representative testing) from these

databases.

Operational experience database. The details of the

traffic were sufficient to identify the total numbers of

trains, the numbers of blocks issued, the amount of

maintenance work, etc., in the test territory for the 2-week

period. The only question is the extent to which the 2

week period was representative of traffic overall in the test

location.

3.4. Expert elicitation process: Quantification workshop

In order to compensate for the limitations and gaps in the

above databases, the data need to be filtered and scaled. To

perform these adjustments, a 2-day elicitation workshop

was held to obtain adjustments to the data represented in the

databases available for quantification. A total of 30

attendees participated in the 2-day workshop, including

representatives of the railroads, engineers, conductors and

dispatchers.

A facilitator who was familiar with the event being

analyzed, the results of the qualitative analysis, the types of

databases available, and the expertise in the group led the

elicitation process for each human error event. Preliminary

analyses were performed to identify talking points in the

facilitated groups, such as possible causes of human error

events (based on the results of the qualitative analyses

described earlier), examples of the databases and their

possible limitations, and questions to help develop distri-

butions associated with the probabilities being estimated

(such as ‘How high and how low could the end points of the

distributions be, and why?’). The facilitator led

the discussion through the items as the list of causes for

the events and the available databases to ensure that no

significant contributors or sources of information had been

overlooked, and that everyone in the group had a common

understanding of the events and factors being analyzed. In

all cases, an extensive discussion ensued that often clarified

the details of the actions necessary for the event to occur,

anecdotal examples of near-misses that participants had

Table 1

Example data sources for unsafe actions

Event Event data Unsafe human actions Unsafe action data Operating experience

Train fails to stop

at boundary of

authority

Rail company

incident data

FRA incident

data

Train crew fails to stop at

block boundary at end of

authority

Block sign present

Block sign missing

Dispatcher fails to protect

train authority in CADS

Train crew mishears

dispatcher as to limit

of authority (location,

train ID)

Dispatcher mishears train

crew request for

authority (location, train ID)

Employee disciplinary

actions database

Dispatcher disciplinary

actions database

Estimates (e.g., estimates

obtained from train

crews or dispatchers

Estimates (e.g. estimates

obtained from train crews

or dispatchers)

Rail company total

and yard miles (FRA)

Rail company total

and yard miles (FRA)

Number of train

movements in territory

Number of train

movements in territory
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witnessed or participated in, and issues associated with the

content of the databases.

Following this discussion, the facilitator led the discus-

sion to actually estimate the parameters of the model,

including the uncertainty. Two approaches were needed,

one for cases where data were available, but not quite

appropriate and a second for cases where no data could be

found. In the first type of discussion for estimating what

adjustments were necessary to make the database most

relevant, the group considered such issues as which events

needed to be excluded, and where under-or over-reporting

could occur. Based on these discussions, the facilitator led

those group members who had a working knowledge of the

situation to estimate adjustments to the parameters devel-

oped from the database. First, any events in the database that

were not relevant to the scenario were removed (i.e.

filtering). An example was to filter out events that could

only occur in a switching yard where the analysis was only

for events occurring on main tracks. Second, adjustments

were made, for example, for the potential for under-

reporting, as with disciplinary data where people would be

unlikely to self-report their own errors (i.e. scaling).

Following these adjustments, probability distributions

were estimated using a combination of data and elicited

judgment. In almost all cases, these values were obtained by

eliciting the endpoints of the event occurrence distribution

(from using the ‘How high could this event frequency be?’,

and ‘How low…?’ questions, as well as the experts’ bases

for their opinions) and then estimating the shape and the

resulting mean of the distribution.

In the second case, where no database applied, the people

with hands-on experience were asked to think through how

relevant situations could occur, what factors would be most

important, and then to focus on the extreme values—what is

the most often it could occur, and the least often? In some

cases the facilitator had to stimulate the discussion, saying,

‘From what you have discussed, it appears that the high and

low values must be….’ and obtaining consensus through

discussion.

4. Example analysis

This example illustrates just one calculation to show how

the process described above was used to estimate one

parameter: the rate at which locomotive crews exceed their

block authority in dark territory operations (an unsafe action

that can result in a collision if another train or maintenance

equipment is already in the new block). This analysis uses

two sources of data to provide this estimate: the freight

company’s employee disciplinary database, and the train

operations data reported to FRA. The analysis process for

this example is shown in Fig. 2.

The rate of train crews exceeding their authorized block

boundary in dark territory is therefore calculated basically

by dividing the number of disciplinary actions related to

Fig. 2. Example analysis process for train crew exceeds block authority.

dark territory operations by the number of train-miles of

dark territory exposure, as shown in Fig. 2. However, the

disciplinary events are reported for all track miles. There-

fore these events must be scaled for just dark operations. It

was the opinion of the attendees that the total event rate

could best be proportioned in the ratio of the dark to signal

miles. Similarly the total operational exposure (train miles)

needs to be proportioned in the ratio of train control modes.

With regard to the crew disciplinary actions, the

relevant category in the database is the number of ‘track

segments’ violations, of which 91 occurred in the four year

period of the database (1997–2000). Using only these

actions represents an example of the filtering described

above. The workshop participants agreed that the last 4

years was largely representative of the current operations.

It was felt that conditions prior to this period were less

likely to be representative of current conditions (for

example, because of updates in the rule book, company

mergers, etc.) and therefore using the data for just this

period is appropriate.

One simple adjustment was to assess whether the 91

track segment violations in the disciplinary database

represented an under- or over-reporting of the events in

practice. The focus of this analysis was a discussion with the

group members. It was generally agreed that the events in

the database under-represented the events in practice. The

experts in the group—the train crew members and those

familiar with the railroad’s disciplinary process—were

asked how low and how high could the under-estimation

be, using the elicitation process described above. The lowest

under-reporting was estimated to be 5%, and the under-

reporting could be as high as 20%. All intermediate points

were judged equally likely, thus creating a flat distribution

between the limits of 1.05 and 1.20 for the scaling the

number of events in the database.
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The 91 track segment violations could have occurred on

signal territory, dark territory or in yards—no information is

provided in the database to distinguish between these

locations. Based on discussions within the group, it was

agreed that these 91 events could be distributed on the basis

of the train mileage associated with each of the territories

and yard traffic.

The workshop participants agreed that the basis for these

different train miles could be estimated from a combination

of two sources of data: the FRA operating experience

database (which provides train mileage data associated with

track separately from yards), and the relative track lengths

associated with signal, dark territory, and other operations.

The data from the yard versus track traffic over the 4 years

was analyzed using the FRA data, with the results being

shown in the following Table 2.

Based on data provided by FRA, the following were

found to be the track lengths associated with different modes

of operation (Table 3).

While the ‘unknown’ category in Table 3 only

represents less than 10% of the total track length, it

would represent just over 25% of the dark territory if all

the unknown operations were, in fact, dark. The reason for

it being unknown is largely because of it being made up

of short lengths of track, often in connection with

industrial (private) tracks, and for which centralized

records were not readily available. If the uncertainty

with the operating modes in this track was very important,

more detailed surveys would need to be sought, which

could take significant resources and time. In this analysis,

it was concluded that treating the operating modes of the

lengths of unknown track as a source of uncertainty would

be sufficient for the purposes of this study.

In order to model this as a source of uncertainty, the

extremes, of the unknown track being either all signal or

all dark, were taken as the endpoints of a distribution.

However, this was considered unlikely by the workshop

participants. The most likely condition was that the

unknown miles would be in proportion to the known

miles identified as signal or dark. Automatic train control

(ATC) is used very rarely and its locations are well

known. Yard miles are also well known and the unknown

miles can be excluded from the yards. Therefore the

operating modes for the unknown miles are only either

signal or dark.

Thus, the probability density function shown in Fig. 3

was created to represent the fraction of the total system

miles that represent dark operations in the unknown

territory. That is, if the unknown miles are all signal, then

the dark territory would represent 27.8% of the total miles;

if all the unknown miles are dark, then the total dark miles

would be (27.8 þ 9.9), or 37.6% of the total miles. The

‘most likely’ value for the allocation of the unknown track

lengths was discussed by the attendees, and it was agreed

that that it would be best represented in the proportion of the

known track lengths for the signal and dark territories. That

is, the peak of the distribution is located between the lower

and upper limits. Given the above upper and lower limits,

the peak lies at 31.3%, as shown in Fig. 3.

Using the above data and judgments represented

in the distributions, the mean rate of exceedance

is 3.1 £ 1027/train mile, with a range of 2.9 –

3.6 £ 1027/train-mile. This analysis was performed using

a commercial software add-in to Microsoftw Excel that

manipulates discrete data distributions in spread sheets,

rather than the single point values normally used in Excel.

For this analysis, the distribution is well-represented by a

uniform (flat) distribution, with the above limits. The shape

of this distribution is strongly influenced by the shape of the

distribution used to characterize the range of under-

reporting (also uniform). While expressed in units of

‘exceedances per train-mile’ (since the source of the

exposure rate is train-miles), the risk analysis typically

uses ‘per block boundary’ for the hazard rate. The average

block length is 6.3 miles, so the corresponding mean

exceedance rate is 2.0
2

£ 1026 per block boundary, with a

range of 1.8–2.3 10 6 per block boundary.£

Fig. 3. Probability distribution of fraction of track miles representing dark

operations in the unknown tracks.

Table 3

Track lengths for different operating modes of freight company (FRA data)

Operating mode Length (miles) Fraction (%)

Yard 2963 13.6

ATC 75 0.3

Signal 10,560 48.4

Dark 6,072 27.8

Unknown 2,164 9.9

Total 21,834

Table 2

Freight company train miles (from FRA database)

Year Total train miles Yard train miles Non-yard train miles

1997

1998

1999

2000

83,733,024

83,447,524

105,277,723

114,426,120

13,324,933

13,367,246

16,075,426

17,874,254

70,408,901

70,080,278

89,202,297

96,585,866
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5. Findings

The approach taken for HRA was able to generate

reasonable results (i.e. acceptable to the workshop

participants) despite the fact that there was no directly

applicable database. The workshop format permitted

experts from many different organizations and back-

grounds to work together and reach consensus. Uncer-

tainty was expressed through probability distributions that

were accepted by the group. The HRA and PRA teams

reached agreement that the HRA results were appropriate

for use in the PRA.

The approach taken in this study provides one viable way

for others to perform HRA studies in support of the FRA’s

proposed Standards for Development and Use of Processor-

Based Signal and Train Control Systems. The lessons

learned from performing this example analysis of the system

were documented and provide guidance on avoiding

potential pitfalls in future human reliability analyses

studies.

Two observations are relevant from our study to other

analyses of human reliability, both related to rail and to

other industries:

† First, that the analytical situation in this study—having

some relevant data but with a variety of limitations (not a

perfect match for what we want to estimate, with sources

that may lead to both under- and over-estimates of

frequency) are far from unique to our case. They happen

often and must be addressed explicitly

† Second, the approach we took for combining ‘hard data’

with expert judgment is a good approach that could be

used in other applications. It uses hard data to ground the

experts judgments, while using expert judgment to

compensate for the known limitations of the existing

data.

Recommendations for future analyses of rail HRA

studies:

1. Use an HRA team that includes members experienced in

performing human factors studies, human reliability

analyses, PRAs, and group facilitation.

2. Model human errors at compatible levels in the PRA and

HRA tasks, preferably at the level of available data and

experience.

3. Verify that the data sources (databases, expert judgment

or a combination) are suitable for the tasks and associated

errors being analyzed. Identify gaps or mismatches and

utilize expert judgment to leverage the available data

while compensating for the known limitations of the

data.

4. Conduct qualitative task analyses with people experi-

enced in using the existing systems. Activities should

include interviews with workers using the existing

systems or the target users of the system (in the case of

technologies under development), their trainers and

supervisors, so that all levels of experience are included.

5. Expert elicitation methods should take into account

known biases and other limitations of expert judgment.

Experts should express their opinions in terms of ranges

rather than single point values.

6. Solicit input from as broad a range of stakeholders as

possible so that the analysis takes into account a wide

range of perspectives. Accept quantitative inputs only

during the elicitation process, from people with relevant

operating experience.

7. Ask the broadest range of stakeholders possible to review

to the results of the analyses to foster support for the

results.
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